
CHAPTER 6 BEGINNING 
BASIC 
PROGRAMMING 

Introduction 

Programming modes 

Input/Output statements 
Control statements and loops

Conditional statements 
Subroutines 

REMarks

65 



Up until now, you may or may not have understood exactly 
what was going on in the programs that introduced you to 

some of the capabilities of your Plus/4. This chapter willex-

plain some of the BASIC commands that were used in those 

programs. This chapter focuses on some of the more often
used BASIC statements that you will need to construct your 

Own programs. At the end of this chapter we will touch on 

some programming techniques. This chapter will give you a 

quick introduction to programming, but it is still an introduc-

tion. To really learn to program, we suggest you pick up a 

good book on BASIC at your local bookstore. (See the bibli- 

ography in Section 14 of the Encyclopedia for suggestions.)
There are many versions of BASIC, each a little different. 
Your Plus/4 is equipped with an advanced version of the 

BASIC language called Commodore BASIC 3.5. 

INTRODUCTION 

PROGRAMMING
MODES 

Your Plus/4 gives you two ways to use BASIC statements 

and commands: in direct mode and indirect mode. Direct 
mode is often referred to as immediate mode, and indirect 

mode is also known as program mode. 

DIRECT, or IMMEDIATE MODE, as the name implies, exe- 

Cutes statements and commands immediately (as soon as 

you pressETURNafter typing in a command). You do 
not type line numbers when using commands or statements

in direct mode. You only type the command or statement and 

press theEURN key. This mode is used if you want 

your computer to perform calculations and give you an im-

mediate result. Commands such as LIST, SAVE, LOAD, 
VERIFY and RUN are usually used in direct mode. Most 

(but not all) BASIC statements work in direct mode. 

INDIRECT, or PROGRAM MODE, allows you to organize a 
series of BASIC statements into a set of instructions that will 
be performed in the order that you decide. Each of the lines 
in the program has a line number which tells the computer 
to execute the lines in a certain order. You've already seen 
several examples of program mode in Chapter 4. Remember 
that when you use program mode, you must press RERORN 
to enter each line of the program into the memory of your 

Plus/4.If you don't press RETURN,and just go to thne 
next line, the line you typed has not been entered. Once the 
program is in memory, nothing will happen until you enter 
the RUN command. The RUN command tells the Plus/4 to 
execute the program starting with the lowest numbered ine. 

Lines are most often numbered by tens, since you'll fre- 
quently have to add lines in different places in the process of 
writing a program. You could, if need be, add nine new lines 
between line 10 and line 20 in a program. However, your 
Plus/4 features a BASIC command, RENUMBER, that allows 
you to add new lines and change the existing line numbers. 

66 



This saves a lot of confusion that often occurs when chang- 
ing and rearranging lines 

INPUT/OUTPUT 
STATEMENTS 

Input/Output (1/O) statements are used in programs to com- 
municate with the person RUNning the program. Before the 
program is run, if all the data for the calculations is available, 
there is really little need for input statements. It is often more 
useful if the computer can get data from the person RUNning
the program (we'll call him or her the program user). Pro- 
grams are much more versatile if the data is not "set in 
stone" before running them. Output statements can be used 
by the computer to tell the person running the program the 
answers that the computer has calculated. Obviously, output 
statements are vital; there would be little sense in RUNning a 
program that had no output statements. (Kind of like a tree 
falling in a forest with no one around to hear; does it make 
a sound? Does it matter?)
Advanced programmers also use l/O statements to com- 
municate with devices instead of with the program use 
Youve probably done this yourself, but not in a program-
when you used LOAD or SAVE with your Datassette or Disk 
drive. LOAD is basically an input statement since the Plus/4 
gets data your program) from your Datassette or disk drive 
while SAVE is an output statement, as the Plus/4 sends data 
to those devices.

In this introduction to l/O statements, we will limit ourselves 
to a few of the most important ones, the ones that you'll need 
immediately. They are: PRINT, INPUT, GETKEY, and READ/ 
DATA. PRINT is an output statement, while the others are 
input statements. (Remember that all BASIC I/O statements 
can be found 
this book.) 

n the BASIC Encyclopedia at the end of 

Statement name: PRINT 

Format: PRINT "text in quotes" or variables 
or numbers or calculations, etc. 

You have used the PRINT statement often in programs in 
earlier chapters. From that, and from the format example
above, you can see that PRINT is a very versatile statement. 
You can use it to PRINT out messages, pictures made out of 
graphic characters, perform calculations, display the value
of a variable, and more. Since the PRINT statement is used 
sO often, it pays to learn to use it well. 

Use #1 Text Display
Suppose in your program, you want to inform the user that 
his or her checking account balance is negative, or that pur- 

67 



ple lizards are not allowed in the control room. The easiest 
way would be to PRINT your statement as a text string. Text 
strings are printed out exactly as you type them in. They
must be surrounded by double quotes (" "). For example:

100 PRINT "YOU ARE BROKE!"

would tell the user that there is no money left, while

150 PRINT "YOU CANT BRING YOUR FRIEND INTO 

THE CONTROL R0OM"

could be used in the second example. 

Whatever appears between the quotation marks is known 
as a literal, because it is PRINTed exactly as it appears. It 
doesn't matter whether it is words, letters, numbers, punctu-
ation marks, etc. 

Certain keys, like the cursor and color keys, act differently 
when used in text strings. Instead of changing the color or 

moving the cursor when you type the key, a reverse charac 
ter is printed in the string. When the program is RUN, the 
character is translated into what you wanted typed in the first 
place. This lets you clear the screen, change the color youu 
are PRINTing in, move the Cursor, all within your program. 

For example, try this: 

10 PRINT " SHIFTECLRHOME CONTROL3
TESTING,CRSR-DOWN cONTROL 7 TESTING"

Remember to type the following keys simultaneously when 
you use the SHIFT and CONTROL keys. The reversed sym- 
bols are the signals to the computer that tells it to perform the 
clear screen, color change or move the cursor.

Use #2 Printing Numbers and Calculations
PRINT can display the answer to a calculation made within 
the print statement. (SEE NUMBERS and CALCULATIONS).
The Plus/4 performs the operations needed to get the an-

swer, then displays it on the screen. For example: 

100 PRINT 58* 15,23,45+ 1000-45* (4-3) 

prints:
870 23 1000 

This gets more interesting when variables are also used. 
User input can be displayed, and earlier calculations saved 
in variables can also be PRINTed out, or even used in addi-

tional calculations.

68 



Examples

TYPE: 

10 R= 10* 2: N= R-5 
20 PRINT "RIS ";R;" AND N IS ";N 
30 PRINT "BUT R TIMES 2 S";R*2 
40 PRINT "AND N MINUS 2 IS";N-2 

Normally, after each PRINT statement, the cursor automati- 
cally goes to the beginning of the next line. You can override
this by putting a semicolon (:) after the PRINT statement 
like this: 

200 PRINT"THESE TWO SENTENCE PARTS WILL BE"; 
210 PRINT "PRINTED ON THE SAME LINE" 

Statement name: INPUT 

Format: INPUT "optional message";variable 
to be input 

The INPUT statement lets you get data from the program
user through the keyboard, and use it in the program. The 
optional message lets you tell the user exactly what you are 
asking for, the message is printed when the INPUT state- 
ment is executed, along with a question mark. Then the 
Plus/4 waits for the user to type an answer, followed by pres-
sing the R RNkey. The input from the user is placed 
in a variable. You can either get a string from the user by 
using a string variable (A$, for example), or a number by 
using a numeric variable. The INPUT statement can only be 
used in program mode. 

Examples: 

TYPE: 

10 PRINT "WHAT IS YOUR NAME"; 
20 INPUT A$ 
30 PRINT "IAM PLEASED TO MEET YOU";A$;". 
40 INPUT"HOW OLD ARE YOU"; AG 
50 PRINT AG;" IS A BIT OLDER THAN I AM" 
RUN 

Statement name: GETKEY 

Format: GETKEYvariable to be input
GETKEY is another way for you to enter data wi 
gram is being RUN. The GETKEY statement accepts only 
one key at a time. Whatever key is pressed is assigned to the 

the pro- 

69 



string variable you specified in the GET statement (A$, for 
example). GETKEY is useful because it allows you to enter 
data one character at a time without having to press the 
RETURN key after each character. The GETKEY
statement may only be used ina program. 

Example of GETKEY in a program:

1000 PRINT "PLEASE CHOOSEA, B, C, D, E, OR F" 
1010 GETKEY A$ 

Statement Name: READ/DATA 

Format: READ variables to be input 
DATA data items to be read 

The READ/DATA statements are used as a convenient way 
to assign values to variables. You can think of the READ 
statement as an INPUT statement that asks the Plus/4 for the 
data, rather than the user. The data is (naturally enough)
kept in DATA statements. When the Plus/4 executes a READ 
statement, it looks at the next data item in the DATA state- 
ment, and assigns it to the variable in the READ statement. 

The READ statement is always used with a DATA statement. 
A DATA statement is just a line of data (words or numbers) in 
a program. The READ statement is used to assign those 
values to variables. (For each variable listed in the READ 
statement, your Plus/4 "reads" a value from the DATA line for 
that variable.) A DATA statement is not executable and can 
appear anywhere in the program. The thing to remember
about the READ statement is that the variable type must be 
the same as the type of data available in the DATA statement 
(number variables for numbers, text variables for text). 
Otherwise, a TYPE MISMATCH ERROR ocCurs.

Example:
10 READ A$,B$, C$,D$.E$ 
20 PRINT A$:PRINT B$:PRINT C$ 
30 PRINT D$: PRINT E$ 
40 DATA GROUCHO, HARPO, CHICO 
50 DATA ZEPPO, GUMMO 

The computer responds with: 

GROUCHO
HARPO 
CHICO 
ZEPPO 

GUMMO 

70 



CONTROL
STATEMENTS 

AND 
LOOPS 

It would be pretty boring if your computer could only execute
program lines in order. The computercould only start at the 

beginning and go through each step in order until the end of 
the program. This would lead to very long programs, if you 
wanted to do the same thing twice (like PRINT "HELLO"). 
you would have to duplicate the program lines. With a small
example like PRINTing HELLO, this doesn't make a lot of 
difference, but it could become difficult in larger programs. 
This is why computers have control statements. Control 
statements tell the computer to ignore the normal order of 
the program lines, and go to another line regardless of the 
sequence. The Plus/4 has several varieties of control state 
ments: unconditional (like GOTO) which always transfer
control; counting statements (like FOR/NEXT) which transfer
Control a specified number of times; and, for you structured 
programming fans out there, DO/LOOP.

Statement Name: GOTO 

Format: GOTO line # 

GOTO tells your computer to immediately go from the cur- 
rent line in your program to the line number specified in the 
GOTO statement. For example, if line 20 reads GOTO 40, 
your Plus/4 would jump to line 40, skipping any statements 
between 20 and 40. 

Example using GOTO statement in a program

TYPE:

10 PRINT "A PENNY SAVED IS BETTER THAN 
NOTHING"
20 GOTO 10 

The computer responds by printing the message in line 
10 again and again, until you press the STOP key, like this:

A PENNY SAVED IS BETTER THAN NOTHING 
A PENNY SAVED IS BETTER THAN NOTHING 
A PENNY SAVED IS BETTER THAN NOTHING 

BREAK IN 10 If you press the 

key READY 

This print statement will continue 'forever. Every time your 
Plus/4 gets to the GOTO in line 20 it goes back to line 10. 
This is called an INFINITE LOOP in computerese. While you 
might want to do this, usually you want to repeat only a cer tain number of times, or until something happens. That is 

71 



why the FOR/NEXT and DO/LOOP statements are available 
in BASIC. 

GOTO can also be used in direct mode. GOTO line # 
start the program at the line you specify, while keeping the 
variables the same (instead of clearing them as RUN does). 

will 

Statement Name: FOR/ NEXT 

Format: FORvariable = start value TOend value 

some BASIC statements

NEXTvariable 

The FOR/NEXT statements let you create a loop that will re-
peat a certain number of times. The program statements 
between the FOR statement and the matching NEXT state-
ment are repeated in the loop. The variable in the FOR 
statement acts as a counter. It is initially set at the start value 
you supply. Then, the program lines after the FOR are exe- 
cuted, until the computer gets to the matching NEXT state- 
ment. The NEXT tells your Plus/4 to add one to the counter.
If the counter is less than or equal to the end value, the com- 
puter returns to the program line after the FOR statement. 
Otherwise, your Plus/4 continues with the first statement after 
the NEXT. 

Example using a FOR/NEXT loop 

10 PRINT "COUNTUP..." 

20 FOR J= 1 TO 10 
30 PRINT "WE HAVE";J 
40 NEXTJ 
50 PRINT "WE COUNTED UP TO";J 

One more thing about FOR/NEXT: you can also specify a 
STEP value in the FOR statement. Instead of adding 1 to the 
counter variable, your Plus/4 adds your STEP value. If you 
use a STEP of 5 with the statement FOR M = 10 TO 30, for 

example, the counter would count 10, 15, 20, 25, 30 after 
each loop. The STEP command even lets you count back-
wards (by using a negative STEP value).

Another example, with a negative STEP: 

10 PRINT "COUNTDOWN..." 
20 FOR J= 10 TO 1 STEP -1 
30 PRINT "WE ARE AT";J 
40 NEXTJ 
50 PRINT "WE HAVE LIFT-OFF AT" ; J 

72 



Statement Name: DO UNTIL/WHILE...LOOP 

UNTL/WHILE 

Format: DO UNTIL[condition] WHILE 

[condition] 

some BASIC statements 

EXIT] 
LOOP UNTIL [condition] WHILE 
[condition] 

The DO/LoOP statement combination is another way to 
create a loop. This statement combination is very powerful 
and versatile. The DO/LOOP method of loops is a common

technique of structured programming languages. In this 

chapter we'll discuss just a few possible uses. 

If you want to create an infinite loop, just start a section of 
program lines with DO, and end it with a LOOP statement, 
like this: 

100 DO: PRINT "GOING UP" 
110 LOOOP 

Press theSTOP key to end the program.

A more useful form is to combine the DO/LOOP with the 
UNTIL statement. The loop will run continually unless the 
condition for UNTIL happenS. 

100 DO: INPUT "DO YOU LIKE YOUR COMPUTER"; A$ 
110 LOOP UNTIL A$= "YES" 
120 PRINT "THANK YOU" 

For the other ways you can use the DO/LOOP, see the BASIC 
Encyclopedia at the end of this book. 

CONDITIONAL Conditional statements are used to make decisions. One 
aR of the most powerful abilities of a computer is to make deci-

sions based on what is going on. One of the conditional 
DECISION

MAKING eta 
statements available on the Plus/4 is known as IF/THEN
statements. 

STATEMENTS
Statement Name: IF/THEN

Format: F condition THEN do this (only if the condition 
is true) 
Basically, the IF/THEN statement works like this: 

IF (this statement is true) THEN (do this statement) 
Actually, you have always known how conditional statements 
work. How many times have you heard this famous line?: 

73 



IF you eat all your vegetables THEN you can have dessert.
That may seem a bit trivial, but that is the gist of the IF/THEN
statement. 

If the condition in the lF statement is true, everything after the 
THEN is executed. 

EXAMPLE
10 INPUT"WHAT'S THE TENTH LETTER OF THE 

ALPHABET" ; A$ 
20 IF A$= "J" THEN PRINT "RIGHT": GOTO 100 
30 INPUT "IS THIS AN A";X$ 
40 IF X$="YES" "LOOP" THEN 60 
50 PRINT "WRONG, TRY AGAN": GOTO 30 
60 PRINT "TYPEAB"
70 GETKEY A$:F A$= "B"THEN PRINT "RIGHT"

100 PRINT "THAT'S ENOUGH OF THIS, ANYWAY"

In line 40, we just say THEN 60. This actuallymeans THEN 
GOTO 60, but since the THEN GOTO combination is used so 
often, BASIC allows you to leave off the GOTO. An optional
step for the IF/THEN statement is the ELSE clause, that di-
rects your computer to a specific action if the original IF 

condition was not met. An example showing the ELSE clause 
would be: IFB>5 THEN 40 ELSE GOTO 10. The BASIC En-
cyclopedia explains the IF/THEN/ELSE statement more fully. 

SUBROUTINES If you have something in your program that has to be re-

peated in more than one place in your program, you have 
two choices: you can have duplicate routines, or you can 
create a subroutine. A subroutine is a section of your pro 
gram that can be used from anywhere else in your program.
When the subroutine is finished, the program automatically
continues at the statement just after where the subroutine 
was called.

Statement Name: GOSUB/RETURN

Format: GOSUB line # 

The GOSUB statement is used to call a subroutine. Like the 
GOTO statement, control is transferred to the line number 
specified in the statement. However, unlike the GOTO, the 
Plus/4 remembers where the GOSUB is located. When a 
RETURN is next encountered, control returns to just after the 
GOSUB statement.

74 



Example 
5 T-0:FOR J = 1 TO 99 
10 PRINT "GIVE ME A NUMBER FROM 1 TO 10 
20 INPUT N 
30 IF N<1 THEN GOSUB 100:GOTO 20 
40 IF N>10 THEN GosUB 100:GOTO 20 
50 T T+N 
60 NEXTJ 
70 PRINT "THE TOTAL IS"T 
80 END 
100 PRINT "THAT NUMBER IS OUT OF RANGE" 
105 PRINT "PLEASE TYPE A NUMBER BETWEEN
1 AND 10" 
110 RETURN 

If a RETURN is encountered when there are no active 
GOSUBs, you get a RETURN WITHOUT GOSUB ERROR. 
You should be careful that the computer never gets into one 
of your subroutines except by GOTO. One method is to group 
the GOSUB and GOTO statements together, protected 
from normal program execution by an END statement. 

Statement Name: REM REM 
STATEMENTS Format: REMmessage 

The REM statement is used to comment (or REMark) on your 
programs. The REM statement is not executed as part of the 
program; it is a message that can be seen only when looking
over the LISTing of a program. Often, if you don't comment,
six months after you write the program you might forget what 
Some part does. You can use REM statements to put in re-
minders, sO you can more easily figure out what you really 
meant, or give others information with your messages. 

Example:
1560 E= RT 9:REM THIS FIGURES OUT A 
PITCHER'S ERA 
100 INPUTA, B: REMAIS HEIGHT IN INCHES AND BIS 
WEIGHT 

As we REMarked in the introduction, this would not be a com- 
plete tutorial on BASIC. We just gave you some of the BASICs.
Every BASIC command in the Plus/4 is in the BASIC Encyclo
pedia, with format, description, and examples. Don't be afraid 
to experiment. If you are serious about learning BASIC, get 
some of the books on BASIC programming listed in the Sec- 
tion 14 of the Encyclopedia. Programming is like eating salted 
peanuts: once you start, you may not be able to stop. 

SUMMARY 

75 





{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }


{ "type": "Document", "isBackSide": false }

